NASA SBIR/STTR Technologies

S3.04-9478 - High Duty Cycle, Extended Operation Constant Volume Combustion Engine

PI: Roberto Di Salvo Streamline Automation, LLC - Huntsville, AL

Identification and Significance of Innovation

- * NASA's Science Mission Directorate is chartered with answering the fundamental questions requiring the view from and into space.
- * Technologies being sought in propulsion include, precision landing, hazard avoidance, in-space rendezvous, and ascent/decent vehicle propulsion.
- * This adjustment of mission focus will require propulsion systems that can operate under more demanding conditions, and provide greater flexibility.
- * During Phase I we hot fire tested a constant volume (CV) combustion engine and demonstrated the feasibility of this engine cycle.
- * The CV engine will provide:
- * Significant weight reduction through lightweight and low pressure fuel and oxidizer storage.
- * System simplification through the elimination of pumps.
- * Improved safety through the use of non-hypergolic fuels.
- * Reduced costs in the system components and ground servicing.

Constant volume combustion engine testing Note shock diamonds in the plume.

Estimated TRL at beginning and end of contract: (Begin: 4 End: 6)

Technical Objectives and Work Plan

Technical Objectives:

- * Increased cycle repetition rate (greater that 10 Hz)
- * Increased chamber pressure (over 1000 psi)
- * Demonstrate thrust modulation through the use of pulse-width modulation techniques
- * Demonstrate the reliability of critical CV engine components to sustained thermal and mechanical operating stresses
- * Further develop the scaling/similarity relationships for engine design purposes
- * Develop sufficient datasets for performance and mission planning purposes

Work Plan:

- * Upgrade of the CV Engine Testbed Incorporate aerospace grade valves and actuators to increase cycle repetition rate.
- * Performance Mapping of the Upgraded Prototype Map the engine performance to determine ISP and thrust coefficient, among others.
- * Definition of Phase II CV Engine Requirements/Design Parameters Define engine requirements based on notional NASA missions.
- * Detailed Modeling and Engineering Analysis Perform detailed thermal, flow, and stress analysis on the engine.
- * Develop and Implement More Sophisticated PLC Controller Implement closed-loop control and on-board diagnostics.
- * Scaling/Similarity Study Perform a scaling analysis to estimate full-scale engine

NASA Applications

- * Orbital maneuvering and station keeping systems for NASA satellites and probes
- * Ascent stage propulsion for sample return missions (Mars and asteroid)
- * Suitable for any application where there is a need for a propulsion system that needs:
- * A deeply throttable engine,
- * A pulsed mode operation engine,
- * An engine that will experience cold soak without requiring propellant heating, or
- * An alternative to hypergolic propellants.

Non-NASA Applications

- * DACS systems on Kinetic Kill Vehicles (KKVs)
- * Adaptation for commercial satellites using hypergolic propellants for orbital maneuvering and station keeping
- * Alternative to hypergolic bipropellant thrusters

Firm Contacts

Alton Reich

Streamline Automation, LLC 3100 Fresh Way Southwest Huntsville, AL, 35805-3637 PHONE: (256) 713-1220 FAX: (256) 713-1225